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Planar reorientation of a free-free beam in space using embedded electromechanical actuators
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ABSTRACT

It is demonstrated that the planar reorientation of a free-flee beam in zero gravity space call bo

accomplished by periodically changing the shape of the beam using embedded electromechanical actuators.

The dynamics which determine tile shape of the free-free beam is assumed to be characterized by' the l'2ulet-

Bernoulli equation, including material damping, with apppropriate boundary conditions. The coupling

between the rigid body motion and the flexible motion is explained using the angular momentum expression

which includes rotatory inertia and kinematically exact effects. A control scheme is proposed where the
embedded actuators excite the flexible motion of the beam so that it rotates in the desired sense with

respect to a fixed inertial reference. Relations are derived which relate the average rotation rate to the

amplitudes and the frequencies of the periodic actuation signal and the properties of the beam. These

reorientation maneuvers can be implemented by using feedback control.

1. INTRODUCTION

Classical models of uniform free-free flexible beams in zero-gravity space result in complete decoupling

of rigid body motion and fiexiMe motion. However, conservation of the angular momentum of the b,,am

indicates that the classical models are incomplete in the sense that there is in fact higher order nonlin-

ear" coupling between the rigid body motion and the flexible motion, if rotatory inertia and kinematicallv

exact modeling effects are included. Assuming that the angular momentum of the beam is always zoro.

oscillalions in the shape of the flexible beam can actually cause a rotation of the beam with respect _o a

fixed inertial reference. The rotation of the beam over one period depends only on the shape of the beam

over the period and does not depend on the length of the period; hence this phenomenon is re%fred to a_

a geometric phase change.

These observations lead to a scheme for carrying out asymptotic reorientation of a free-free tto×it,b,

beam iu space using only electromechanical actuators embedded in the beam. These embedded electr_,m,.-

chanical actuators, e.g. piezoelectric actuators, do not change the angular momentum of the free-free }_,,am

hut they can be used to change the shape of the beam in a periodic way thereby resulting in a rotation of Th,,

beam in space. This reorientation scheme, based on the use of embedded actuators, does not require u-,' ,',t

momentum wheels or gas jets and thus requires a minimal use of fuel to achieve a given beam reorientaT i, _t.

In _his paper, the basic modeling issues are addressed. The dynamics which characterize the slLa_i.

of the free-free beam is assumed to be characterized by tile guler-Bernoul[i equation, including mat.:i:_

damping, with apppropriate boundary conditions. The coupling between the rigid body motion ami !tL,

flexible motion is explained using tile angular momentum expression. A control scheme is proposed wh.r,
the embedded actuators excite the flexible motion of the beam so that it rotates in the desired son.,,

Relations are derived which relate the average rotation rate to the amplitudes and the frequencio_

the periodic actuation signal and the properties of the beam. These reorientation maneuvers (at_ I_

implemented by using feedback control. Important features of the approach are indicated.



2. A PLANAR FREE-FREE BEAM MODEL

Consider a uniform free-free beam of undeformed length 2L in space with zero angular montentunl and

zero linear momentum. Referring to Fig. l the motion of the beam is constrained to a plane defined by

vectors (el,e3) where (el,_a2. _3) is an orthonormal basis for an inertial frame whose origin is at The center

of mass of the beam. Let (7._,k) be a rotating frame with its origin fixed at the origin of the inertial

frame such that the vectors (7,/c) lie in the plane (gl,/:3) and j = _,. The straight line passing through

the origin in the direction of vector _: is called the reference line. Let the beam initially be at rest in a

straight line configuration aligned with the reference line. Then, the location of each point on the line of

mass centroids of the beam can be described in terms of the parameter s E [-L.L]. This parameter s

can be viewed as a label for each of the crossections. We assume that as the beam deforms the shape and
the area of the crossections remain invariant. Following other researchers 1'2'3 we introduce three functions

u(s.t).y(s,t):[-L,L] x t_ -- 1_' and _.'(s.I):[-L,L] x }_ -- T 1 such that (u(.s.t)+.s.y(s,t))define the

coordinates of the line of centroids in the deformed configuration with respect to the moving frame (_. k) at

time t. The angle ¢,(s, t) between the normal to the crossection at s and e3 specifies the orientation of the

crossection. The normal to the crossection at s is denoted bv [3- We define the material basis ([1, [2,t3) to

be orthonormal so that [1 lies in the plane (#1,#3). The crossection itself can be associated with the set of

points ((t,_2) in a compact set A C }e_ such that {ttl +_212 + (u(.s,t) + s)[¢ + (y(s,t))[ gives the location

of any point on the beam as (t and so2 vary through ,4 and s varies from -L to L.

Since the origin of the inertial frame is fixed at the center of mass of the beam we obtain

C g(s, t)d.s = O,
L

C u(s,t)ds = 0. (2
L

Let p denote the constant mass density per unit volume of the beam. We assume that the beam has a

symmetric crossection so that the first moment of inertia of the crossection about the line of centroids is

/4 p(ld(ldE2 = O.

The second moment of inertia of the crossection about the line of centroids is

[2 = /A P_t2d(td_2"

The mass per unit length of the crossection is given by

,no = fA pd_td_2. 5_

We define the angle O(t) between e3 and k so that y(s, t) measured from the reference line satisfies th,'

following orthogonality condition

_L sg(s, t)ds = , li)O.
L

The existence of the angle O(t) follows from the geometry indicated in Fig. 1. This definition provid,,s a

separation between the motion which determines the shape of the beam, given by g(s,t), -L < s < L. and

the rotation of the beam as a whole, given by O(t).



3. EQUATIONS OF MOTION

We first develop a kinematically exact expression for the angular momentum of the free-free beam. Let

_(.s._l,_. O. t) be the vector from the origin of the inertial frame to a point (s,_1,_¢2) on the beam at time
t: then

P=(ssinO+ycosS+_cos_.,+usinO)_.l+(c_2)_2+(scosS-_isinW-ysinO+ucosO)_.3 (7)

where 0 = O(t), y = y(s.t) and ¢, = u(s,t). The angular momentum about the origin of the inertial frame
at time t is zero so that

/__ /4P_ X _td_ld_2ds = O. (_)

Substituting equation (7) into equation (8) and using equations (4) and (5) we can express 0 in terms of

y, tt and c.t as

_yJl (9)
fL._L{-mo.s2 -- moy 2 - [_}ds

where cr = _, - 0 is the angle between the normal [3 to the crossection at s and the reference line.

Assume that the beam is unshearable and inextensible and that the deformations are small. This

implies, using equation (2), that

u(s,t) = O. (10)

and that

cr _ y_. (ll)

We use the Euler-Bernoulli beam model to characterize the shape of the beam. 4's Thus y(_,t) satisfies the

Euler-Bernoulli equation of tile form

moYtt + 7Ytssss + Ely,,,, = -

with the boundary conditions

trl

- )
2=1

12)

y,,(-L) = y**(L) = 0, l:l_

y,,,(- L ) = y,_( L ) = 0 It!

where [ = [2/P, E is Young's elasticity modulus, _' is the distributional derivative of the delta function alid

where for simplicity we assume Kelvin-Voigt damping with a positive damping coefficient 7. In addition.

y(s,t) must satisfy conditions (1)and (6). Internal bending torques vj(t),j = 1,...,raare producod by

m point actuators located at s = sj on the beam where s3 E l-L, L]. These embedded electromechanical

actuators change the shape of the beam but at the same time preserve the angular momentum. Alth(,_,zh

such actuators are capable of inducing relatively small displacements one can excite the beam periodically

at a frequency near one of the lower resonant frequencies of the beam to obtain relatively large perio_lic

shape change.

Using expressions (6), (tO) and (i1) in equation (9) we obtain

__ - fL L h ytsd,s

r + fL_g moy2ds
il.5



2 L 3where 7- = 5rno + 212L. This expression demonstrates the nonlinear coupling between the beain'_ shape

and its rigid body motion. Expression (1.5) is non-integrable in tile sense that if y(s, t) is a periodic fun(:tion

of time. the integral of 0 over one period is, in general, non-zero.

Remark 3.1 If in tile above derivation we had not used tile kinematically exact expression for tile angular

momentum but had used the linearized strain assumptions we would have obtained the expression

= -- 129stds. (16)
r L

As can be seen expression (16) leads to the incorrect conclusion that a periodic change in the shape of tho

beam does not result in rotation of the beam. Note that inclusion of rotatory inertia effects and the use

of the kinematically exact expression for the angular momentum is necessary in order to demonstrate that

the beam can rotate in space due to periodic shape change.

We expand the solution y(#.t) to equation (12) in the series

'OO

V(_,t = _7. w,(s)qi(t) (17)
_=1

where wi(s), i = 1,2 .... are the orthouormal elastic mode shapes of the Euler-Bernoulli model. The elastic

mode shapes are given by

{ cos(j3is)- _cosh(g_is) if/= 1,3,5
sinh(3, L) " " '
cos(3,L) • ,

Wi(S) = sin(3i.s) 4- _smh(,Ois) if i = 2,4,6...

where 3i are the positive roots of the equation

cos(23L)cosh(23L) = 1

ordered according to their magnitude.

Expansion (17) provides the modal decomposition

fl; + c,,:t +_zi2q = )._[ bijuj(t),i = 1,2...

j=l

l', )

= -I2 _=l(Ji(li) !!))
r + E_, qi_

where Ji = wi(L)- wi(-L). We note that (19) is non-integrable for any truncation of the infinite series

in (17).

w he re ..,',

the shape of the beam and is called the shape space equation. Substituting equation (17) into equation

we obt;till

[ ."_ )

m0 ' = --gf and b,3 = as I,=,j. Equation (12), or equivalently equation (18). deternLl_L,,,



4. ASYMPTOTIC REORIENTATION MANEUVERS

The goal is to accomplish asymptotic maneuvers, i.e. starting with O(to) = 0o, y(s, to) = 9t(.s, t0) = 0

we want to rotate tile beam so that O(t) -- 0_, y(s,t) -- 0 and yt(s,t) -- 0 as t ---. _c fOE"some desired

angle 0q.

Consider the periodic excitation of the beam at a single frequency ,z as

,0
rj(t) = vj + vjcos(wt),j = 1,2 ..... m (20)

Since the shape space dynamics of the free-free beam is asymptotically stable, the steady-state motion of

the beam is given by

qi( t ) = li -4-ai cos( _zt + Oi ) (21)

where

and

1 X-p-. 0
= --/_.,bijvj,

_dt2 j=l

(22)

a, = bijvj, (23)

q(_i - ,_2)2 + ci2,:i2 j=l

= -arag - • (24)

The excitation function (20) should be sufficiently small so that the Euler-Bernoulli model for the shape

space dynamics remains valid 6.

If _',_l q2 is small comparing with r we can approximate

r +EZI q2 _ (1 r )

and thus

_ - -r Z Ji qi -4- _ .], (ti qj '2
= j----I

[ntegrating over one period and using equation (21) we obtain

0(2 ) _ 0(01
L_ m-_ i=l j=l

= L _- 1 Oi)] [j=_l(Ij

2rr
= --_--_ _ aiJdjajsin(Cj-Oi).

i:1 )= l,j¢-i

dt

_2.5

Expression (25) implies that, in general, the change in angle 0 in steady-state over one period is non-zer(

thereby proving that a periodic change in shape of the beam results in a rotation of the beam; the sroady

state difference 0(_-) -0(0) is referred to as the geometric phase. There are cases, however, whetl th,



geometric phase turns out to be zero.

Proposition 4.1 Assume that the steady-state motion of tile beam is described by equation (21). Then.

0( 2__:.,) _ 0(0) = 0 if any of the following conditions hold:

1. (_, = 0 for all i

"2. l, = 0 for all i

3. o, = oj for all i,j

The second statement of the proposition is tile most important. It implies that for a non-zero geomet-

ric phase the beam should necessarily vibrate about a non-straight line reference configuration. It follows

from expression (I9) that following the motion _i(t) = -l, - ai cos(a.,t + ¢i) yields a steady-state geometric

phase change negative to that of (21). Therefore, in order to rotate the beam in the opposite direction it
,0

is sufficient to reverse tile signs of rf and t o .

Remark 4.1 Expression (25) can be used in order to predict the sign and the value of the geometric

phase. Consider a beam which has a square crossection with side size R. Assume that two actuators at

sl = -rL and s2 = rL where 0 _< r 5_ 1 produce torques according to equation (20). Using two first modes

in the series (25) yields

O(--2"r) _ 0(0) -..~

where

81.5661((v_) 2 -(v_)2)(v ° - v_)¢(r)sin(02 - Ox)

_(r) = (sin(2.36502r)+ 0.1329 sinh(2.36502r))2(cos(3.9266r) - 0.0279 cosh(3.9266r)).

We are now ill a position to formulate a specific control strategy to accomplish tile asymptotic ma-

neuver. Starting at rest with O(to) = 00 application of control law (20) results in a nonzero rotatioI_ ,,v,,r

a period. By repetition of cycles of motion (21) as many times as necessary the beam can be ('aus,',i _,_

rotate closer and ('loser to 04. As O(t) approach 0d we can reduce the alnplitude of the oscillations :_, z,.,,,

in a way so that O(t) -- O_ as t -- _c.

The proposed control law is of the form

[ r,'_ cos(a,'t)] ,j =1 ..... m,ca(t) =_k 0 °+tJ
• ) - i

where 2(k-xl,,p < t-t0 < 2k,.p, k = 1,2 .... ; that is, tile control excitation is an amplitude modui;,l,,,i

function, where 7,ota' t}_ are constants and sk denotes the scalar amplitude modulation sequence that _l.,iii_,,-

the control excitation on the k-th cycle. Each cycle is exactly p periods.

The constants ,_, t-'°, tyf can be chosen nearly arbitrary, although one approach is to choose ct!.., ,,- r,_

maxinlize the geometric phase expression

,.-X5 ,:'_

E E aiJJaajsin(¢j-¢i)

i=l )=l.j#i



Since I_k] -- 0 then qi(t) -- 0 and qi -- 0 as t -- _c. By continuity O(t) -- 0_'°'_ for sonte constan, 0 ':°'_

as t -- _c. We want to show that 0c°_ = 04.

Bv contradiction, assume that 0c°'_ > 0,i. Let 53 > 0 be sufficiently small so that 0c°_ -_3 > 0_. Choose

_3 so that

( Oc°'_ - Od - _3 )2T > > o.

Then. there exists an integer Na such that for any k > Na it follows that lekl < 5a and 0=_'_k- 0_°_l < b_.

Note that for any k > N3+ 1 and / > N3+ I

and

1

<0

1

_ > > Iztl.

Thus. we conclude from (A2) that for any k,l > N3 + i it follows that Ek = _l # 0. Hence, we obtain
a contradiction to the convergence of the sequence _k to zero as k --* oo. Similar arguments lead to a

contradiction in case 0c°n < 04.

Finally, it follows fl'om equations (28) and (23) that

lim O(t}=O4, lim (!l(s't) )t--,:c t--,x_ 9t(s,t) = 0,-t < s < Z

The controller which we have constructed has two functions. Its main function is to excite the oscilla-

tions of the beam in such a way so that the beam rotates in the desired sense. Subsequently, the controlM

serves to suppress the vibrations previously excited so that the free-free beam comes to rest with a desir,'d

orientation. Note that control law (27) is a non-smooth feedback control law.

5. NUMERICAl. EXAMPLE

Space structures can often be modeled as light and flexible beams. Consider a beam with half-lon_l

L = t[m], density per unit volume p = 1400[kg/m 3] and square crossection with the side size R = 0.l',,,i

Young's modulus of the beam is E = 3.0 x 106[N/m 2] and the damping coefficient of Kelvin-Voigt dampi_t

is "_ = 0.2. Two actuators are installed near both ends of the beam at r = 0.9. The maximal torq_l_, ,.act

of the actuators can produce is equal 100[Nm]. The excitation frequency ,; = 13[Hz] is selected T,, li

-0 and fi_'. j = t.2 a Ebetween the first t0.6[Hz] and the second 29[Hz] resonant frequencies of the beam; vj

chosen using expression (26) to maximize the geometric phase change over one period. For this exa_t_l,I

we choosep = .5 and 7_ = "re = 0.9. We want to rotate the beam from 00 = 0.1[tad}at t = 0 [.,,, T

0j = 0[rad]. The dependence of the angle O(t) [rad] on time t[sec] is shown for a part of the mane_v, _ i

Fig. 2. In this case the geometric phase change over one period in steady-state predicted by expressio_ , ",

is equal to -2.7465 x 10 -1 [rod] whereas its actual value is equal to -3.0411 x l0 -4 [rad]. The dep,,t_,l,,_,

of the control parameter ._ on time is shown ht Figure 3.



whereai, li, _Pi,i = 1,..., are related to b°, _f, j = 1...., m according to expressions (22)-(24). and i'O.:07
are constrained by

rrt rrt

j=l j=l

In terms oft a,n° 0_a.....j = 1, m this is aconstrained mathematical programming problem which is linear
_0 r,0) We will subsequently denote the maximum val,e ofin tj (for fixed O_) and quadratic in _'f (for fixed tj .

this constrained optimization t)robtenl as _0".

The modulation sequence e_+t is defined in terms of an "average" of O(t), over the k-th cycle, that is

1

0_._'_ = :_ (maxO(t) + rain O(t))

where the maximum and minimum are over '2(k-t),,p < t - to < _ We also introduce two auxilarv

variables 0g_ = 00 and s0 = sign (_). We express ck in terms of 0___ and _k-1 as indicated below:

(A1) Compute

r k =

1

(A2) In case Ir_l >_ Isk-tl, if rk and _'k-I have the same signs then gk = [s_:-llsign(rk); if rk and _'k-1 have

opposite signs then ek = 71[_'_-llsign(rk), where 0 < 71 < 1.

(Aa) If0 < [rkl < [ek-,I then ck = _,erk, where 0 < 72 < 1.

(A4) Ifrk =0thenek =zk-t.

Proposition 4.2 If the proposed control law is of the form (27) where _% is selected according to

steps (A1)-(A4), then

lim 0_Y_ = 0d, lira ek = 0.
k_,_ k_oc

Sketch of the Proof. Tile sequence Iskl is non-increasing and bounded on [0.1]. Therefore. ther,, ,,xi_r,

b E [0. l] such that b = inf_ We want to show that b = 0.

By contradiction, assume b # 0. Then, for _ = b(1-max(wl.>2))2max('_l,'_2) we can find an integer Nx such rha) for

all k > N_ 1_,1 - b < (. From (A2) and (A3) we conclude that only two cases are possible: s_ = h l'(_r :_ll

k > N1 ors_=-bforallk> N_.

Assume that the former case is true. Since the transient decays to zero and using continuity of 0 wi!h

respect to qi and qi we assert that for _ = lb3_O" there exists an integer N2 such that for any k > .V_,

¢.x0" - < 0;;5 - < b .xo" +

where &0" > 0. Note that °_-°_'" b3 0a-0_t_*,a0- > > 0. Choosing an integer l so that 1 > 2_ + 1 we (:ott<l_l,,
that

- 0;,7+'O> -(b3AO'-'_l)l+O_-O\' > > >0.
AO" AO"

Therefore, the former case can never occur. Similarly, we can verify that the latter case also toa(l_ r,, :_

contradiction. Hence, b = 0.



6. CONCLUSION

In this paper the angular momentum expression for a planar free-free beam in space is derived. It is

shown how the general motion of the beam can be separated into rigid and elastic motions. The change

of shape of the beam is described by the Euler-Bernoulli equation with free-free boundary conditions.

Angular momentum conservation leads to the nonlinear dependence of the rigid motion on the shape of

the beam. As shown this dependence is non-integrable in the sense that a periodic change in shape of the

beam results in a non-zero rotation of the beam over one period. Approximate relationships expressing the

average rate of rotation of the beam in terms of the amplitudes and phases of periodic excitation of the

beam by internal actuators are derived. Finally, a control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between deformations and rotations of deformable bodies is given

by Shapere and Wilczek. 7 Reyhanoglu and McClamroch s have developed a framework for reorientation

of multibody systems in space. In this paper, we have used the framework developed by Shapere and

Wilczek for the specific problem of reorientation of a free-free beam in space; our results represent, in a

certain sense, the limiting case of the multibody results obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Although our study in this paper has been concerned with the ideal case of reorientation of a free-free

beam in space, we note that the same ideas are applicable to reorientation of a wide class of deformable space

structures, using only actuators embedded into the structure. In this sense, smart structures technology

can be used to accomplish a variety of efficient reorientation maneuvers for space structures.
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Fig 1. Inertial, Moving and Material coordinate frames.
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